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Public-Key Encryption Algorithms

1.Rabin public-key encryption

2.McEliece public-key encryption

3.Merkle-Hellman knapsack encryption

4.Goldwasser-Micali probabilistic encryption



Rabin public-key encryption

Key generation for Rabin public-key encryption

Each entity creates a public key and a 
corresponding private key.
Each entity A should do the following:
1. Generate two large random (and distinct) 
primes p and q, each roughly the same size.

2. Compute n = pq.
3. A’s public key is n; A’s private key is (p, q).



Rabin public-key encryption

B encrypts a message m for A, which A 
decrypts.
Encryption:B should do the following:

(a) Obtain A’s authentic public key n.
(b) Represent the message as an integer m in 

the range {0, 1, . . . , n − 1}.
(c) Compute c = m^2 mod n.
(d) Send the cipher-text c to A.



Rabin public-key encryption

Decryption: To recover plaintext m from c, A 
should do the following:
(a) Find the four square roots m1 , m2 , m3 , and 
m4 of c modulo n. 
(b) The message sent was either m1 , m2 , m3 , 

or m4 . A somehow decides which of these is 
m.



Rabin public-key encryption

1. Use the extended Euclidean algorithm to find 
integers a and b satisfying ap + bq = 1. Note 

that a and b can be computed once and for all 
during the key generation stage.

2. Compute r = c(p+1)/4 mod p.
3. Compute s = c(q+1)/4 mod q.
4. Compute x = (aps + bqr) mod n.
5. Compute y = (aps − bqr) mod n.
6. The four square roots of c modulo n are x, −x 
mod n, y, and −y mod n.



McEliece public-key encryption

Key generation for McEliece public-key encryption

Each entity creates a public key and a corresponding private key.

1. Integers k, n, and t are fixed as common system parameters.
2. Each entity A should perform steps 3 – 7.
3. Choose a k × n generator matrix G for a binary (n, k)-linear 

code which can correct t errors, and for which an efficient 
decoding algorithm is known.

4. Select a random k × k binary non-singular matrix S.
5. Select a random n × n permutation matrix P .
6. Compute the k × n matrix G` = SGP .
7. A’s public key is (G`, t); A’s private key is (S, G, P ).



McEliece public-key encryption

SUMMARY: B encrypts a message m for A, which 
A decrypts.
Encryption:B should do the following:

(a) Obtain A’s authentic public key (G`, t).
(b) Represent the message as a binary string 

m of length k.
(c) Choose a random binary error vector z of 

length n having at most t 1’s.
(d) Compute the binary vector c = mG` + z.
(e) Send the ciphertext c to A.



McEliece public-key encryption

Decryption:To recover plaintext m from c, A 
should do the following:

(a) Compute c = cP^−1 , where P^−1 is the 
inverse of the matrix P .

(b)  Decode code generated by G to decode c` 
to m`.

(c) Compute m = m`S^−1 .



Merkle-Hellman knapsack 
encryption

Key generation for basic Merkle-Hellman knapsack encryption
SUMMARY: Each entity creates a public key and a corresponding 
private key.
1. An integer n is fixed as a common system parameter.
2. Each entity A should perform steps 3 – 7.
3. Choose a superincreasing sequence (b1 , b2 , . . . , bn ) and 

modulus M such that M >b1 + b2 + · · · + bn .
4. Select a random integer W , 1 ≤ W ≤ M − 1, such that gcd(W, M 

) = 1.
5. Select a random permutation π of the integers {1, 2, . . . , n}.
6. Compute ai = W bπ(i) mod M for i = 1, 2, . . . , n.
7. A’s public key is (a1 , a2 , . . . , an ); 

A’s private key is (π, M, W, (b1 , b2 , . . . , bn )).



Merkle-Hellman knapsack 
encryption

B encrypts a message m for A, which A decrypts.

Encryption:B should do the following:
(a) Obtain A’s authentic public key
(a1 , a2 , . . . , an ).
(b) Represent the message m as a binary 

string of length n, m = m1 m2 · · · mn .
(c) Compute the integer
c = m1 a1 + m2 a2 + · · · + mn an .
(d) Send the ciphertext c to A.



Merkle-Hellman knapsack 
encryption

Decryption:To recover plaintext m from c, A 
should do the following:

(a) Compute d = W ^−1 c mod M .
(b) By solving a superincreasing subset sum 

problem , find integers
r1 , r2 , . . . , rn , ri ∈ {0, 1}, such that
d = r1 b1 + r2 b2 + · · · + rn bn .

(c) The message bits are 
mi = rπ(i) , i = 1, 2, . . . , n.



Merkle-Hellman knapsack 
encryption

Solving a superincreasing subset sum problem

INPUT: a superincreasing sequence (b1 , b2 , . . . , bn ) and 
an integer s which is the sum of a
subset of the bi .
OUTPUT: (x1 , x2 , . . . , xn ) where xi ∈ {0, 1}, such that 

for(i=0;i<=n)
xi bi = s;

1. i←n.
2. While i ≥ 1 do the following:

2.1 If s ≥ bi then xi ←1 and s←s − bi . Otherwise xi ←0.
2.2 i←i − 1.

3. Return((x1 , x2 , . . . , xn )).



Goldwasser-Micali probabilistic 
encryption

B encrypts a message m for A, which A decrypts.

Encryption:B should do the following:

(a) Obtain A’s authentic public key n.

(b) Represent the message m as a binary string 

m = m1 m2 · · · mt of length t.

(c) For i from 1 to t do:

i. Pick an r ∈ Zn* at random.                  

ii. If mi = 0 then set ci ←r^2 mod n; 
otherwise set ci ←-r^ mod n.

(d) Send the t-tuple c = (c1 , c2 , . . . , ct ) to A.



Goldwasser-Micali probabilistic 
encryption

Decryption:

Decide whether c is a quadratic residue mod n.

A quadratic residue is a residue class that has 
square root mod n.

If c is a quadratic residue, then m=0.

Otherwise, m=1.



Analysis

From the results:

1.Rabin encryption is an extremely fast operation 
as it only involves a single modular squaring.
2.Rabin decryption is slower than encryption.
3. Although the encryption and decryption 
operations are relatively fast, the McEliece 
scheme suffers from the drawback that the 
publickey is very large. 



Analysis(Contd...)

4.The encryption and decryption algorithms of 
Merkle-Hellman algorithm works really fast!!
5.Goldwasser-Micali probabilistic encryption is 
quick enough but the decryption takes a lot of 
time.



Q & A


