
Implementation and Analysis
of several

Public-Key Encryption Algorithms

By
Sreekanth Yalamanchili

Public-Key Encryption Algorithms

1.Rabin public-key encryption

2.McEliece public-key encryption

3.Merkle-Hellman knapsack encryption

4.Goldwasser-Micali probabilistic encryption

Rabin public-key encryption

Key generation for Rabin public-key encryption

Each entity creates a public key and a
corresponding private key.
Each entity A should do the following:
1. Generate two large random (and distinct)
primes p and q, each roughly the same size.

2. Compute n = pq.
3. A’s public key is n; A’s private key is (p, q).

Rabin public-key encryption

B encrypts a message m for A, which A
decrypts.
Encryption:B should do the following:

(a) Obtain A’s authentic public key n.
(b) Represent the message as an integer m in

the range {0, 1, . . . , n − 1}.
(c) Compute c = m^2 mod n.
(d) Send the cipher-text c to A.

Rabin public-key encryption

Decryption: To recover plaintext m from c, A
should do the following:
(a) Find the four square roots m1 , m2 , m3 , and
m4 of c modulo n.
(b) The message sent was either m1 , m2 , m3 ,

or m4 . A somehow decides which of these is
m.

Rabin public-key encryption

1. Use the extended Euclidean algorithm to find
integers a and b satisfying ap + bq = 1. Note

that a and b can be computed once and for all
during the key generation stage.

2. Compute r = c(p+1)/4 mod p.
3. Compute s = c(q+1)/4 mod q.
4. Compute x = (aps + bqr) mod n.
5. Compute y = (aps − bqr) mod n.
6. The four square roots of c modulo n are x, −x
mod n, y, and −y mod n.

McEliece public-key encryption

Key generation for McEliece public-key encryption

Each entity creates a public key and a corresponding private key.

1. Integers k, n, and t are fixed as common system parameters.
2. Each entity A should perform steps 3 – 7.
3. Choose a k × n generator matrix G for a binary (n, k)-linear

code which can correct t errors, and for which an efficient
decoding algorithm is known.

4. Select a random k × k binary non-singular matrix S.
5. Select a random n × n permutation matrix P .
6. Compute the k × n matrix G` = SGP .
7. A’s public key is (G`, t); A’s private key is (S, G, P).

McEliece public-key encryption

SUMMARY: B encrypts a message m for A, which
A decrypts.
Encryption:B should do the following:

(a) Obtain A’s authentic public key (G`, t).
(b) Represent the message as a binary string

m of length k.
(c) Choose a random binary error vector z of

length n having at most t 1’s.
(d) Compute the binary vector c = mG` + z.
(e) Send the ciphertext c to A.

McEliece public-key encryption

Decryption:To recover plaintext m from c, A
should do the following:

(a) Compute c = cP^−1 , where P^−1 is the
inverse of the matrix P .

(b) Decode code generated by G to decode c`
to m`.

(c) Compute m = m`S^−1 .

Merkle-Hellman knapsack
encryption

Key generation for basic Merkle-Hellman knapsack encryption
SUMMARY: Each entity creates a public key and a corresponding
private key.
1. An integer n is fixed as a common system parameter.
2. Each entity A should perform steps 3 – 7.
3. Choose a superincreasing sequence (b1 , b2 , . . . , bn) and

modulus M such that M >b1 + b2 + · · · + bn .
4. Select a random integer W , 1 ≤ W ≤ M − 1, such that gcd(W, M

) = 1.
5. Select a random permutation π of the integers {1, 2, . . . , n}.
6. Compute ai = W bπ(i) mod M for i = 1, 2, . . . , n.
7. A’s public key is (a1 , a2 , . . . , an);

A’s private key is (π, M, W, (b1 , b2 , . . . , bn)).

Merkle-Hellman knapsack
encryption

B encrypts a message m for A, which A decrypts.

Encryption:B should do the following:
(a) Obtain A’s authentic public key
(a1 , a2 , . . . , an).
(b) Represent the message m as a binary

string of length n, m = m1 m2 · · · mn .
(c) Compute the integer
c = m1 a1 + m2 a2 + · · · + mn an .
(d) Send the ciphertext c to A.

Merkle-Hellman knapsack
encryption

Decryption:To recover plaintext m from c, A
should do the following:

(a) Compute d = W ^−1 c mod M .
(b) By solving a superincreasing subset sum

problem , find integers
r1 , r2 , . . . , rn , ri ∈ {0, 1}, such that
d = r1 b1 + r2 b2 + · · · + rn bn .

(c) The message bits are
mi = rπ(i) , i = 1, 2, . . . , n.

Merkle-Hellman knapsack
encryption

Solving a superincreasing subset sum problem

INPUT: a superincreasing sequence (b1 , b2 , . . . , bn) and
an integer s which is the sum of a
subset of the bi .
OUTPUT: (x1 , x2 , . . . , xn) where xi ∈ {0, 1}, such that

for(i=0;i<=n)
xi bi = s;

1. i←n.
2. While i ≥ 1 do the following:

2.1 If s ≥ bi then xi ←1 and s←s − bi . Otherwise xi ←0.
2.2 i←i − 1.

3. Return((x1 , x2 , . . . , xn)).

Goldwasser-Micali probabilistic
encryption

B encrypts a message m for A, which A decrypts.

Encryption:B should do the following:

(a) Obtain A’s authentic public key n.

(b) Represent the message m as a binary string

m = m1 m2 · · · mt of length t.

(c) For i from 1 to t do:

i. Pick an r ∈ Zn* at random.

ii. If mi = 0 then set ci ←r^2 mod n;
otherwise set ci ←-r^ mod n.

(d) Send the t-tuple c = (c1 , c2 , . . . , ct) to A.

Goldwasser-Micali probabilistic
encryption

Decryption:

Decide whether c is a quadratic residue mod n.

A quadratic residue is a residue class that has
square root mod n.

If c is a quadratic residue, then m=0.

Otherwise, m=1.

Analysis

From the results:

1.Rabin encryption is an extremely fast operation
as it only involves a single modular squaring.
2.Rabin decryption is slower than encryption.
3. Although the encryption and decryption
operations are relatively fast, the McEliece
scheme suffers from the drawback that the
publickey is very large.

Analysis(Contd...)

4.The encryption and decryption algorithms of
Merkle-Hellman algorithm works really fast!!
5.Goldwasser-Micali probabilistic encryption is
quick enough but the decryption takes a lot of
time.

Q & A

